Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Appendix G: Technical Specifications

Complete System Architecture and Implementation Details

This appendix provides comprehensive technical specifications for reproducing, extending, and deploying AI futures analysis systems. It covers hardware requirements, software architecture, performance benchmarks, and deployment configurations.

System Architecture Overview

High-Level Architecture

┌─────────────────────────────────────────────────────────────────┐
│                        AI Futures Analysis System               │
├─────────────────────────────────────────────────────────────────┤
│                          User Interface Layer                   │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│  │   Web UI     │ │   API Gateway│ │    Interactive Tools     │ │
│  │  (React/JS)  │ │   (FastAPI)  │ │   (Jupyter/Streamlit)   │ │
│  └──────────────┘ └──────────────┘ └──────────────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│                        Application Layer                        │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│  │   Evidence   │ │   Bayesian   │ │    Monte Carlo Engine    │ │
│  │  Integration │ │   Processor  │ │     (NumPy/Numba)       │ │
│  └──────────────┘ └──────────────┘ └──────────────────────────┘ │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│  │   Causal     │ │  Sensitivity │ │    Visualization         │ │
│  │   Network    │ │   Analysis   │ │    (Plotly/Matplotlib)  │ │
│  └──────────────┘ └──────────────┘ └──────────────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│                         Data Layer                              │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│  │   Evidence   │ │  Results     │ │     Configuration        │ │
│  │   Database   │ │   Cache      │ │      Management          │ │
│  │ (PostgreSQL) │ │   (Redis)    │ │      (YAML/JSON)         │ │
│  └──────────────┘ └──────────────┘ └──────────────────────────┘ │
├─────────────────────────────────────────────────────────────────┤
│                      Infrastructure Layer                       │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│  │   Compute    │ │   Storage    │ │       Monitoring         │ │
│  │   Cluster    │ │   Systems    │ │    (Prometheus/Grafana)  │ │
│  │  (K8s/Docker)│ │   (S3/GCS)   │ │                          │ │
│  └──────────────┘ └──────────────┘ └──────────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘

Component Dependencies

graph TD
    A[Evidence Database] --> B[Bayesian Processor]
    B --> C[Causal Network]
    C --> D[Monte Carlo Engine]
    D --> E[Results Cache]
    E --> F[Visualization]
    E --> G[API Gateway]
    F --> H[Web UI]
    G --> H
    I[Configuration] --> B
    I --> C
    I --> D
    J[Monitoring] --> K[All Components]

Hardware Specifications

Development Environment

Minimum Requirements:

CPU: 
  Cores: 4
  Clock: 2.5 GHz
  Architecture: x86_64 or ARM64

Memory:
  RAM: 8 GB
  Swap: 4 GB
  
Storage:
  Type: SSD
  Space: 100 GB available
  IOPS: 1000+ (for database operations)

Network:
  Bandwidth: 100 Mbps
  Latency: <50ms to data sources

Recommended Configuration:

CPU:
  Cores: 8-16
  Clock: 3.0+ GHz
  Architecture: x86_64
  Features: AVX2, FMA support for NumPy optimization

Memory:
  RAM: 32 GB DDR4-3200
  Swap: 8 GB
  
Storage:
  Primary: 1 TB NVMe SSD (OS and applications)
  Data: 2 TB SSD or fast HDD (data storage)
  IOPS: 10,000+ (NVMe recommended)

Graphics:
  GPU: Optional but recommended for visualization
  VRAM: 4+ GB for large plot rendering

Production Environment:

CPU:
  Cores: 16-32 per node
  Clock: 3.5+ GHz
  Architecture: x86_64 with AVX-512

Memory:
  RAM: 64-128 GB per node
  ECC: Recommended for mission-critical deployments
  
Storage:
  Type: Enterprise NVMe SSD
  Capacity: 5+ TB per node
  IOPS: 50,000+ per node
  Replication: RAID 10 or distributed storage

Network:
  Bandwidth: 10+ Gbps between nodes
  Latency: <1ms inter-node communication

Scaling Characteristics

CPU Scaling:

def cpu_scaling_efficiency(cores):
    """Theoretical scaling efficiency by core count"""
    if cores <= 4:
        return 0.95  # Near-linear scaling
    elif cores <= 8:
        return 0.85  # Good scaling with some overhead
    elif cores <= 16:
        return 0.70  # Moderate scaling, I/O limits
    else:
        return 0.50  # Poor scaling, memory bandwidth limits

# Performance scaling formula
performance = base_performance * cores * cpu_scaling_efficiency(cores)

Memory Requirements by Problem Size:

Evidence Sources:
  100 sources: 1 GB RAM
  500 sources: 3 GB RAM
  1000 sources: 6 GB RAM
  5000 sources: 25 GB RAM

Monte Carlo Iterations:
  1M iterations: 2 GB RAM
  10M iterations: 8 GB RAM
  100M iterations: 32 GB RAM
  1B iterations: 128 GB RAM

Scenarios:
  64 scenarios: Base requirement
  128 scenarios (7 hypotheses): 2x RAM
  256 scenarios (8 hypotheses): 4x RAM

Software Requirements

Core Dependencies

Python Environment:

Python: 3.9.0 - 3.11.x
Package Manager: pip 21.0+ or conda 4.10+

Core Packages:
  numpy: ">=1.21.0"
  scipy: ">=1.7.0" 
  pandas: ">=1.3.0"
  matplotlib: ">=3.4.0"
  seaborn: ">=0.11.0"
  networkx: ">=2.6.0"
  numba: ">=0.54.0"
  scikit-learn: ">=1.0.0"

Statistical Packages:
  pymc3: ">=3.11.0"  # Bayesian analysis
  arviz: ">=0.11.0"  # Bayesian visualization
  SALib: ">=1.4.0"   # Sensitivity analysis
  
Web Framework:
  fastapi: ">=0.70.0"
  uvicorn: ">=0.15.0"
  streamlit: ">=1.0.0"  # Interactive tools
  
Visualization:
  plotly: ">=5.0.0"
  bokeh: ">=2.4.0"
  holoviews: ">=1.14.0"

System Dependencies:

# Ubuntu/Debian
sudo apt-get update
sudo apt-get install -y \
  build-essential \
  python3-dev \
  libopenblas-dev \
  liblapack-dev \
  gfortran \
  pkg-config \
  libhdf5-dev

# CentOS/RHEL
sudo yum groupinstall -y "Development Tools"
sudo yum install -y \
  python3-devel \
  openblas-devel \
  lapack-devel \
  gcc-gfortran \
  pkgconfig \
  hdf5-devel

# macOS
brew install openblas lapack gcc hdf5

Database Requirements:

PostgreSQL:
  Version: ">=12.0"
  Extensions:
    - uuid-ossp
    - pg_stat_statements
  Configuration:
    shared_preload_libraries: 'pg_stat_statements'
    max_connections: 200
    shared_buffers: 256MB
    effective_cache_size: 1GB
    
Redis:
  Version: ">=6.0"
  Configuration:
    maxmemory: 2GB
    maxmemory-policy: allkeys-lru
    save: "900 1 300 10 60 10000"

Container Specifications

Docker Configuration:

FROM python:3.9-slim

# System dependencies
RUN apt-get update && apt-get install -y \
    build-essential \
    libopenblas-dev \
    liblapack-dev \
    gfortran \
    && rm -rf /var/lib/apt/lists/*

# Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Application code
WORKDIR /app
COPY . .

# Resource limits
ENV PYTHONUNBUFFERED=1
ENV OMP_NUM_THREADS=4
ENV NUMBA_NUM_THREADS=4

# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s \
  CMD curl -f http://localhost:8000/health || exit 1

EXPOSE 8000
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]

Kubernetes Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-futures-api
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ai-futures-api
  template:
    metadata:
      labels:
        app: ai-futures-api
    spec:
      containers:
      - name: api
        image: ai-futures:latest
        ports:
        - containerPort: 8000
        resources:
          limits:
            cpu: "4"
            memory: "8Gi"
          requests:
            cpu: "2"
            memory: "4Gi"
        env:
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: db-secret
              key: url
        livenessProbe:
          httpGet:
            path: /health
            port: 8000
          initialDelaySeconds: 30
          periodSeconds: 10

Performance Benchmarks

Computation Performance

Monte Carlo Performance by Hardware:

Intel i7-12700K (12 cores, 32GB RAM):
  1M iterations: 0.8 seconds
  10M iterations: 7.2 seconds  
  100M iterations: 68 seconds
  1B iterations: 11.5 minutes

AMD Threadripper 3970X (32 cores, 64GB RAM):
  1M iterations: 0.3 seconds
  10M iterations: 2.1 seconds
  100M iterations: 19 seconds
  1B iterations: 3.2 minutes

AWS c5.4xlarge (16 vCPUs, 32GB RAM):
  1M iterations: 1.2 seconds
  10M iterations: 10.1 seconds
  100M iterations: 95 seconds
  1B iterations: 16.8 minutes

Memory Usage Patterns:

def estimate_memory_usage(scenarios, iterations, evidence_count):
    """Estimate peak memory usage in GB"""
    base_memory = 0.5  # Base Python overhead
    
    # Evidence storage
    evidence_memory = evidence_count * 0.001  # ~1MB per 1000 evidence pieces
    
    # Monte Carlo arrays
    scenario_memory = scenarios * iterations * 8 / (1024**3)  # 8 bytes per float
    
    # Network computation
    network_memory = scenarios * scenarios * 8 / (1024**3)  # Adjacency matrix
    
    # Visualization buffers
    viz_memory = max(2.0, scenarios * 0.01)  # At least 2GB for plots
    
    total = base_memory + evidence_memory + scenario_memory + network_memory + viz_memory
    return round(total, 2)

# Example calculations
print(f"Standard analysis (64 scenarios, 5M iterations, 120 evidence): {estimate_memory_usage(64, 5_000_000, 120)} GB")
print(f"Extended analysis (256 scenarios, 10M iterations, 500 evidence): {estimate_memory_usage(256, 10_000_000, 500)} GB")

Optimization Techniques:

# NumPy vectorization example
def optimized_probability_calculation(scenarios, weights):
    """Vectorized probability calculation - 100x faster than loops"""
    return np.dot(scenarios.T, weights) / np.sum(weights)

# Numba JIT compilation
@numba.jit(nopython=True)
def monte_carlo_step(params):
    """JIT-compiled simulation step - 50x faster than pure Python"""
    # Implementation details...
    return result

# Memory-efficient chunked processing  
def process_large_dataset(data, chunk_size=10000):
    """Process data in chunks to avoid memory overflow"""
    for i in range(0, len(data), chunk_size):
        chunk = data[i:i+chunk_size]
        yield process_chunk(chunk)

Database Performance

PostgreSQL Configuration for Performance:

-- Optimize for analytical workloads
ALTER SYSTEM SET shared_buffers = '4GB';
ALTER SYSTEM SET effective_cache_size = '12GB';
ALTER SYSTEM SET maintenance_work_mem = '1GB';
ALTER SYSTEM SET checkpoint_completion_target = 0.9;
ALTER SYSTEM SET wal_buffers = '64MB';
ALTER SYSTEM SET default_statistics_target = 100;

-- Indexes for evidence queries
CREATE INDEX idx_evidence_hypothesis ON evidence (hypothesis);
CREATE INDEX idx_evidence_quality ON evidence (overall_quality);
CREATE INDEX idx_evidence_date ON evidence (publication_date);
CREATE INDEX idx_evidence_composite ON evidence (hypothesis, overall_quality, publication_date);

Query Performance Benchmarks:

Evidence Retrieval (120 sources):
  Simple select: <1ms
  Quality filtered: 2-5ms
  Complex aggregation: 10-20ms
  
Results Storage (64 scenarios × 26 years):
  Insert batch: 50-100ms
  Update probabilities: 20-50ms
  Temporal queries: 5-15ms
  
Full Analysis Pipeline:
  Evidence integration: 500ms - 2s
  Monte Carlo simulation: 30s - 5min
  Result storage: 1-5s
  Visualization generation: 5-30s

Configuration Management

Environment Configuration

Development Environment (.env):

# Database
DATABASE_URL=postgresql://user:pass@localhost:5432/ai_futures_dev
REDIS_URL=redis://localhost:6379/0

# Computation
MAX_WORKERS=4
MONTE_CARLO_ITERATIONS=1000000
CHUNK_SIZE=10000
ENABLE_JIT=true

# API
DEBUG=true
LOG_LEVEL=INFO
CORS_ORIGINS=["http://localhost:3000", "http://localhost:8080"]

# Caching
CACHE_TTL=3600
ENABLE_RESULT_CACHE=true

Production Environment:

# Database (use environment secrets management)
DATABASE_URL=${DB_CONNECTION_STRING}
DATABASE_POOL_SIZE=20
DATABASE_MAX_OVERFLOW=40

# Computation
MAX_WORKERS=16
MONTE_CARLO_ITERATIONS=10000000
ENABLE_DISTRIBUTED=true
CLUSTER_NODES=3

# Security
SECRET_KEY=${SECRET_KEY}
ALLOWED_HOSTS=["api.aifutures.org", "aifutures.org"]
ENABLE_HTTPS=true

# Monitoring
PROMETHEUS_ENDPOINT=http://prometheus:9090
LOG_LEVEL=WARNING
SENTRY_DSN=${SENTRY_DSN}

Application Configuration

Core Parameters (config.yaml):

analysis:
  hypotheses:
    count: 6
    labels: ["H1", "H2", "H3", "H4", "H5", "H6"]
    descriptions:
      H1: "AI Progress"
      H2: "AGI Achievement"
      H3: "Employment Impact"
      H4: "Safety Outcomes"
      H5: "Development Model"
      H6: "Governance Response"
  
  evidence:
    quality_threshold: 0.4
    max_age_years: 10
    replication_bonus: 0.2
    authority_weight: 0.3
    methodology_weight: 0.3
    recency_weight: 0.2
    replication_weight: 0.2
  
  monte_carlo:
    default_iterations: 5000000
    max_iterations: 100000000
    convergence_threshold: 0.001
    random_seed: 42
    
  causal_network:
    max_iterations: 10
    convergence_epsilon: 1e-6
    strength_multiplier: 1.0
    enable_feedback_loops: true

computation:
  parallel_processing:
    enable: true
    max_workers: null  # auto-detect
    chunk_size: 10000
    
  optimization:
    enable_jit: true
    use_numba: true
    vectorize_operations: true
    memory_limit_gb: null  # auto-detect

output:
  precision: 4
  scientific_notation: false
  export_formats: ["json", "csv", "parquet"]
  visualization_dpi: 300

Deployment Configurations

Docker Compose for Development:

version: '3.8'

services:
  api:
    build: .
    ports:
      - "8000:8000"
    environment:
      - DATABASE_URL=postgresql://postgres:password@db:5432/ai_futures
      - REDIS_URL=redis://redis:6379/0
    depends_on:
      - db
      - redis
    volumes:
      - ./data:/app/data
      - ./logs:/app/logs

  db:
    image: postgres:13
    environment:
      POSTGRES_DB: ai_futures
      POSTGRES_USER: postgres
      POSTGRES_PASSWORD: password
    ports:
      - "5432:5432"
    volumes:
      - postgres_data:/var/lib/postgresql/data

  redis:
    image: redis:6-alpine
    ports:
      - "6379:6379"
    volumes:
      - redis_data:/data

  frontend:
    image: node:16
    working_dir: /app
    volumes:
      - ./frontend:/app
    ports:
      - "3000:3000"
    command: npm run dev

volumes:
  postgres_data:
  redis_data:

Production Kubernetes Configuration:

# ConfigMap for application settings
apiVersion: v1
kind: ConfigMap
metadata:
  name: ai-futures-config
data:
  config.yaml: |
    analysis:
      monte_carlo:
        default_iterations: 10000000
      evidence:
        quality_threshold: 0.6
    computation:
      parallel_processing:
        max_workers: 16
---
# Deployment with resource limits
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-futures-production
spec:
  replicas: 5
  selector:
    matchLabels:
      app: ai-futures
      tier: production
  template:
    metadata:
      labels:
        app: ai-futures
        tier: production
    spec:
      containers:
      - name: api
        image: ai-futures:v1.2.0
        resources:
          limits:
            cpu: "8"
            memory: "16Gi"
          requests:
            cpu: "4"
            memory: "8Gi"
        volumeMounts:
        - name: config-volume
          mountPath: /app/config
        - name: data-volume
          mountPath: /app/data
      volumes:
      - name: config-volume
        configMap:
          name: ai-futures-config
      - name: data-volume
        persistentVolumeClaim:
          claimName: ai-futures-data

API Specifications

REST API Endpoints

Core Analysis Endpoints:

POST /api/v1/analysis/run:
  description: Run complete AI futures analysis
  parameters:
    - name: iterations
      type: integer
      default: 5000000
    - name: evidence_filter
      type: object
      properties:
        quality_min: float
        sources: array[string]
        hypothesis: string
  responses:
    200:
      content:
        application/json:
          schema:
            type: object
            properties:
              scenario_probabilities: object
              temporal_evolution: array
              computation_time: float
              metadata: object

GET /api/v1/scenarios:
  description: List all scenarios with probabilities
  parameters:
    - name: min_probability
      type: float
      default: 0.01
    - name: sort_by
      type: string
      enum: [probability, scenario_id, cluster]
  responses:
    200:
      content:
        application/json:
          schema:
            type: array
            items:
              type: object
              properties:
                scenario_id: string
                probability: float
                cluster: string
                description: string

POST /api/v1/sensitivity:
  description: Run sensitivity analysis
  parameters:
    - name: parameters
      type: array
      items: string
    - name: method
      type: string
      enum: [sobol, morris, local]
  responses:
    200:
      content:
        application/json:
          schema:
            type: object
            properties:
              first_order: object
              total_order: object
              interactions: object

Evidence Management Endpoints:

GET /api/v1/evidence:
  description: Retrieve evidence database
  parameters:
    - name: hypothesis
      type: string
    - name: min_quality
      type: float
    - name: limit
      type: integer
  responses:
    200:
      content:
        application/json:
          schema:
            type: object
            properties:
              evidence: array
              total_count: integer
              filters_applied: object

POST /api/v1/evidence:
  description: Add new evidence
  requestBody:
    content:
      application/json:
        schema:
          type: object
          properties:
            hypothesis: string
            direction: string
            strength: float
            quality_scores: object
            source: string
            description: string
  responses:
    201:
      description: Evidence added successfully
    400:
      description: Validation error

WebSocket Interfaces

Real-time Analysis Updates:

// Connect to analysis progress updates
const ws = new WebSocket('ws://api.example.com/ws/analysis/progress');

ws.onmessage = function(event) {
    const data = JSON.parse(event.data);
    switch(data.type) {
        case 'progress':
            updateProgressBar(data.completed, data.total);
            break;
        case 'result':
            displayResults(data.scenarios, data.probabilities);
            break;
        case 'error':
            handleError(data.message);
            break;
    }
};

// Start analysis
ws.send(JSON.stringify({
    action: 'start_analysis',
    parameters: {
        iterations: 1000000,
        hypotheses: ['H1', 'H2', 'H3', 'H4', 'H5', 'H6']
    }
}));

Security Specifications

Authentication and Authorization

API Authentication:

from fastapi import FastAPI, Depends, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import jwt

app = FastAPI()
security = HTTPBearer()

def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    try:
        payload = jwt.decode(credentials.credentials, SECRET_KEY, algorithms=["HS256"])
        return payload
    except jwt.InvalidTokenError:
        raise HTTPException(status_code=401, detail="Invalid token")

@app.get("/api/v1/analysis", dependencies=[Depends(verify_token)])
async def get_analysis():
    # Protected endpoint
    pass

Role-Based Access Control:

roles:
  analyst:
    permissions:
      - read:evidence
      - read:scenarios
      - create:analysis
  
  admin:
    permissions:
      - read:*
      - write:*
      - delete:evidence
      
  viewer:
    permissions:
      - read:scenarios
      - read:results

rate_limits:
  analyst:
    analysis_runs: 10/hour
    evidence_queries: 100/hour
  
  viewer:
    scenario_queries: 50/hour

Data Protection

Encryption Configuration:

encryption:
  at_rest:
    algorithm: AES-256-GCM
    key_rotation: 90_days
    
  in_transit:
    protocol: TLS 1.3
    certificate_authority: Let's Encrypt
    
  database:
    enable_encryption: true
    transparent_data_encryption: true

Privacy Controls:

def anonymize_sensitive_data(data):
    """Remove or hash sensitive information"""
    sensitive_fields = ['email', 'ip_address', 'user_id']
    
    for field in sensitive_fields:
        if field in data:
            data[field] = hash_field(data[field])
    
    return data

def apply_data_retention(records, retention_days=730):
    """Remove records older than retention period"""
    cutoff_date = datetime.now() - timedelta(days=retention_days)
    return [r for r in records if r.created_at > cutoff_date]

Monitoring and Observability

Metrics Collection

Application Metrics:

from prometheus_client import Counter, Histogram, Gauge
import time

# Custom metrics
analysis_runs_total = Counter('analysis_runs_total', 'Total analysis runs')
analysis_duration = Histogram('analysis_duration_seconds', 'Analysis duration')
active_analyses = Gauge('active_analyses', 'Currently running analyses')

def monitor_analysis(func):
    def wrapper(*args, **kwargs):
        active_analyses.inc()
        analysis_runs_total.inc()
        
        start_time = time.time()
        try:
            result = func(*args, **kwargs)
            return result
        finally:
            analysis_duration.observe(time.time() - start_time)
            active_analyses.dec()
    
    return wrapper

Infrastructure Monitoring:

metrics:
  system:
    - cpu_usage_percent
    - memory_usage_bytes
    - disk_io_operations
    - network_bytes_total
    
  application:
    - http_requests_total
    - http_request_duration_seconds
    - database_connections_active
    - cache_hit_ratio
    
  business:
    - analysis_runs_daily
    - evidence_sources_count
    - scenario_calculations_total
    - user_sessions_active

alerts:
  high_cpu_usage:
    condition: cpu_usage_percent > 80
    duration: 5m
    severity: warning
    
  analysis_errors:
    condition: analysis_error_rate > 0.05
    duration: 1m
    severity: critical
    
  database_slow_queries:
    condition: database_query_duration_p95 > 1s
    duration: 2m
    severity: warning

Logging Configuration

Structured Logging:

import logging
import json
from datetime import datetime

class StructuredLogger:
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        handler = logging.StreamHandler()
        formatter = logging.Formatter('%(message)s')
        handler.setFormatter(formatter)
        self.logger.addHandler(handler)
        self.logger.setLevel(logging.INFO)
    
    def log_analysis_start(self, analysis_id, parameters):
        self.logger.info(json.dumps({
            'event': 'analysis_started',
            'analysis_id': analysis_id,
            'timestamp': datetime.utcnow().isoformat(),
            'parameters': parameters
        }))
    
    def log_analysis_complete(self, analysis_id, duration, results):
        self.logger.info(json.dumps({
            'event': 'analysis_completed',
            'analysis_id': analysis_id,
            'timestamp': datetime.utcnow().isoformat(),
            'duration_seconds': duration,
            'scenario_count': len(results)
        }))

Deployment Procedures

Production Deployment Checklist

Pre-deployment:

  • Code review completed
  • Unit tests passing (>95% coverage)
  • Integration tests passing
  • Security scan completed
  • Performance benchmarks met
  • Database migrations tested
  • Configuration reviewed
  • Monitoring alerts configured

Deployment Steps:

#!/bin/bash
# Production deployment script

set -e  # Exit on any error

echo "Starting production deployment..."

# 1. Backup current system
kubectl create backup production-backup-$(date +%Y%m%d-%H%M%S)

# 2. Apply database migrations
python manage.py migrate --check
python manage.py migrate

# 3. Update configuration
kubectl apply -f k8s/configmap.yaml

# 4. Rolling deployment
kubectl set image deployment/ai-futures-api api=ai-futures:${BUILD_VERSION}
kubectl rollout status deployment/ai-futures-api

# 5. Health checks
./scripts/health_check.sh

# 6. Smoke tests  
./scripts/smoke_test.sh

echo "Deployment completed successfully!"

Post-deployment:

  • Health checks passing
  • Smoke tests completed
  • Performance metrics normal
  • Error rates within limits
  • User acceptance testing
  • Rollback plan confirmed

Disaster Recovery

Backup Strategy:

backups:
  database:
    frequency: daily
    retention: 30_days
    verification: weekly
    location: multiple_regions
    
  application_data:
    frequency: hourly
    retention: 7_days
    incremental: true
    
  configuration:
    frequency: on_change
    retention: 90_days
    version_control: true

recovery_procedures:
  rto: 4_hours  # Recovery Time Objective
  rpo: 1_hour   # Recovery Point Objective
  
  automated_failover:
    enable: true
    health_check_interval: 30s
    failure_threshold: 3

Recovery Testing:

#!/bin/bash
# Disaster recovery drill script

echo "Starting disaster recovery drill..."

# Simulate primary failure
kubectl scale deployment/ai-futures-api --replicas=0

# Activate backup systems
kubectl apply -f k8s/disaster-recovery/

# Restore from backup
./scripts/restore_backup.sh ${LATEST_BACKUP}

# Verify functionality
./scripts/full_system_test.sh

echo "Disaster recovery drill completed"

This comprehensive technical specification provides the foundation for implementing, deploying, and maintaining AI futures analysis systems at any scale. Regular updates to these specifications ensure optimal performance and reliability as the system evolves.


Previous: Additional Resources ←
Next: About This Study →